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EXECUTIVE SUMMARY 

Ply-level models of laminated composites, according to which laminae are modeled 

as orthotropic plies, result in singular stress behavior in the vicinity of the ply interface and 

laminate edge. Numerical piecewise polynomial approximation-based approaches, such as 

displacement spline approximation, provide an accurate solution except in the vicinity of the 

singularity. A hybrid approximation, based on combined asymptotic and spline 

approximation stress functions and spline approximation displacement functions, was 

developed to provide accurate stress fields in the vicinity of the ply interface and the hole 

edge in a multilayered composite laminate. The singular term of the asymptotic analysis was 

used in hybrid stress functions. This term dominates the solution in the limit of zero distance 

from the singularity; however, the corresponding stress functions will not satisfy the three- 

dimensional equilibrium equations in any finite domain enclosing the singular point. 

Reissner's variational principle was applied and a procedure to determine the multiplicative 

factor of the singular term developed. A convergence study for a [45/-45]s laminate 

containing an open hole is presented. It was shown that the coarsest possible subdivision into 

one sublayer per ply provides converged values for the multiplicative factor of the singular 

term. The convergence was checked by comparison with results obtained with eight times 

more degrees of freedom. Converged interlaminar stresses including the singular point were 

obtained with two sublayers per ply thickness. The conventional approach based on 

displacement spline approximation required six sublayers through the thickness to obtain the 

multiplicative factor of the singular term at select circumferential locations. The combined 

asymptotic-spline approximation solution greatly increases the number of plies in the 

IX 



laminate for which accurate interlaminar stresses can be obtained, by allowing coarser 

subdivisions. 

The initiation and progression of damage for simple composite laminates with open 

holes under tension loading was recorded, and observations were correlated with results from 

experimental measurements from two-dimensional elasticity theory and from three- 

dimensional spline variational theory. During an incremental series of monotonic loadings, 

strain measurements were taken in close proximity to the hole boundary, while radiographic 

images were captured following each loading increment. This information provided a direct 

comparison between the state of damage and the state of strain. Three laminate stacking 

sequences were considered: [08]T, [908]T, and [±45]2S. As expected, the initiation of damage 

and laminate fracture occurred almost simultaneously for the [908]T laminate. Transverse 

cracking occurred prior to specimen failure for the [08]T and [±45]2S laminates and is evident 

in the measured strain behavior. Overall, theoretical strains obtained from the spline 

variational theory agree well with experimental strain measurements at low loadings prior to 

damage initiation. 



1. COMBINED ASYMPTOTIC AND B-SPLINE-BASED APPROXIMATION FOR 
3-D ANALYSIS OF COMPOSITE LAMINATES WITH OPEN HOLES 

1.1      Introduction 

Significant practical interest represents development of methods for efficient stress 

analysis of composite structures containing curvilinear edges such as cutouts, etc. Ply level 

models of laminated composites, according to which lamina is modeled as an orthotropic ply, 

result in singular stress behavior in the vicinity of the ply interface and laminate edge. This 

report deals with three-dimensional stress analysis in the presence of singular stress 

concentrations and focuses on representing the stress field by using a superposition of the 

asymptotic solution and polynomial spline approximation. 

Important experience was accumulated due to a large effort devoted to the solution of 

straight free-edge problems. A hybrid approximation, based on assumed in-plane stresses and 

the out-of-plane stresses defined to satisfy the equilibrium equations, was proposed by Pagano 

[1,2]. Reissner's variational principle was employed. Also, not including the precise singular 

stress terms, highly accurate stress predictions for various laminates were demonstrated. Wang 

and Choi [3,4] constructed an infinite series exact general solution for the same problem based 

on Lekhnitskii's complex variable stress function. The singular stress term was precisely 

determined. A polynomial particular solution was added to satisfy the axial loading condition. 

Determination of the unknown multiplicative factors in the homogeneous solution, including the 

multiplicative factor of the singular term, was accomplished by the boundary collocation method. 

The results were shown to converge for the number of Eigen functions of homogeneous solution 

equal to 30. A hybrid finite-element formulation (Tong, et al. [5]) based on this solution was 

developed by Wang and Yuan [6]. 



Folias [7] and Wang & Lu [8] considered stresses in laminated composites at the interface 

and open-hole edge. They showed that the zero's order term of asymptotic expansion of the 

three-dimensional elasticity equations upon parameter k=h/D (ply thickness/hole diameter) yields 

a plain strain elasticity problem. Thus, the singular stress term at the ply interface and curvilinear 

edge is the same as that for the straight edge provided the ply orientations are the same relative to 

the tangential to the curved edge. However, extending these results to obtain a full-field solution 

in the manner it was performed in two-dimensional cases is not trivial. The critical difference is 

that the analytically obtained Eigen functions of the asymptotic plain strain problem do not 

satisfy the original three-dimensional equations in any finite volume. Thus, no exact 

homogeneous solution is constructed to this point in a finite volume surrounding the intersection 

of the hole edge and orthotropic ply interface. It should be noted that the impressive convergence 

advantages of the hybrid singular finite element formulation were demonstrated [5,6] for 

problems where the assumed stress functions in relatively large singular elements actually 

provided the exact elasticity solutions over the entire element. An assumed displacement-based 

finite-element formulation, combining the asymptotic and polynomial approximation, was built 

by Wang and Lu [8] and the stress intensity factor for a ±45 laminate obtained as a function of 

the circumferential coordinate. Conciseness of this report, however, would not allow one to 

comment on the rate of convergence. It was noted that the asymptotic solution is included only 

over a small region near the free edge of the cutout. 

Iarve [9] developed a B-spline-based displacement approximation three-dimensional 

solution for multilayered composite laminates containing open holes. It was also shown that a 

plane strain problem identical to the one obtained asymptotically in References [7] and [8] 

follows from the three-dimensional formulation by truncating the spatial derivatives in the 



circumferential direction. The numerically obtained stress distributions near the hole edge were 

compared to the stresses given by the singular term of the asymptotic solution. At the singularity 

the polynomial spline approximation did not capture directional nonuniqueness of singular stress 

functions and resulted in interfacial traction discontinuity. However, it was observed that the 

singular term of the asymptotic solution with the appropriate coefficient matched the full-field 

spline approximation-based solution, with accuracy to additives-functions of the circumferential 

coordinate inside a region of up to one-half ply thickness from the singular point (except for the 

very vicinity of the singular point). The surprisingly large area of agreement suggests 

superimposing the singular term and the polynomial approximation, for accurate stress 

representation in the singular region. 

Morley [10,11] pioneered the idea of superposition of the analytical and finite-element 

solution in problems with local field irregularity. The approach is based on the Rayleigh-Ritz 

method where polynomial displacement approximation is enriched through the entire domain by 

analytical solution minus its finite element projection. The analytical solution must be a 

particular solution of the problem. The finite-element projection is obtained by finite-element 

solution under the boundary conditions generated by the analytical solution with unit 

multiplicative factor. For sufficiently fine meshes the analytical solution and its projection will 

differ only in the vicinity of the singular point. The scaling factor, which is the coefficient of the 

additional terms used for enrichment of the finite element basis, is obtained through a variational 

procedure. Yamamoto and Tokuda [12] applied this method to crack stress intensity factor 

determination. They used the boundary collocation method to obtain the multiplicative factor of 

the terms containing analytical solutions. 



For the curvilinear edge singularities considered in this report, no analytical solution in 

finite domain near the singularity is known. The asymptotic solution obtained in [7-9] is a plane 

strain solution in nature and cannot be used directly in the approach described in [10-12], It 

should be mentioned that Yamamoto and Sumi [13] considered an axisymmetric problem of a 

twisted round isotropic bar with a circumferential crack. The asymptotic solution which was 

used as the basis for analytical solution near the crack tip was also a plane strain solution which 

doesn't satisfy the axisymmetric equilibrium equations. However, for the round isotropic bar 

problem, which was reduced to a single unknown function (the circumferential displacement 

component), the author found a higher-order term which was added to the asymptotic solution to 

satisfy the equilibrium equations. However, in a general orthotopic case, these complementary 

terms are not obvious and have not been reported in the literature. 

This report extends the superposition approach to problems where no analytical solutions 

in the finite domain are known. The fact that the singular terms of the asymptotic solution result 

from the three-dimensional problem by truncating the spatial derivatives in the circumferential 

direction [9] will be used to construct a hybrid stress approximation. On the other hand, the 

corresponding asymptotic displacement functions should be avoided in the displacement 

approximation because the calculation of their derivatives in the circumferential direction, 

required in the variational formulation, is only numerically possible and undesirable. Thus, the 

approximation of stresses and displacements in this report will be independent, requiring 

Reissner's variational principle to be utilized. 



1.2     Problem Statement 

Consider a rectangular n-layer orthotropic plate with length L in the x-direction, width A 

in the y-direction and thickness H. Individual ply thickness is h a^-z**, where z=z<5) and z^z^" 

are upper and lower surfaces of the ply. The origin of the x,y,z coordinate system is in the lower 

left corner of the plate, as shown in Figure 1. Uniaxial loading is applied via displacement 

boundary conditions: 

- ux (0, y, z) = ux (L, y, z) = uQ, 

uy (0, y, z) = uy (L, y, z) = 0, 

uz(0,y,z) = uz(L,y,z) = 0, 

(1) 

A circular opening of diameter D with the center in x^ yc is considered. The edge of the opening 

is part of the traction loading boundary dVt, so that 

(Tijnj=Ti,xiedVt 

nlv4 ^-rT" 
nlvS 

nlv2 

nlv1 
-► 

Figure 1. Laminated Plate and the Coordinate Systems, respectively. 



where tractions Tt are prescribed. Indices i,j=l,2,3 correspond to directions x,y,z, respectively. 

The lateral sides y=0,A and the facial surfaces z=0,H also belong to dVt. A cylindrical 

coordinate system r,6,z with the origin inx^ yc 0 is introduced and 

x = rcos6 + x ,y = rsin9 + y ,z = z c c 

The asymptotic solution in the vicinity of the hole edge and ply interface will be described next 

since it is essential for construction of the hybrid approximation. 

1.3      Asymptotic Solution 

A local coordinate system t],\}ris introduced in the r,z plane at the interface betweenp and 

p+7 plies in arbitrary radial cross-section 6=const as follows 

I)     „ (D\ 
r = — + Hpr] cosy, z = zKy' + Hp7] siny, 

where Hp=hp+hp+]. For an arbitrary function F: 

dF      1 dF      1   A   _ 

A      
dF 1 dF  . 

A^^C0S^-^^Sin^' (2) 

.        dF . 1 dF 
A« =—smy/- + — —-cosy, 

<?77 77 dyr 

Establishing an asymptotic expansion parameter T]0=max(ri), one obtains that 

dF       l ox   r    1 •  ^ — = -=—cos0A,F--sin0—, 
dx    HrjQ 

r      r        <?0 

dF       1 1 <3F 
-r- = ——sm0A,F + -cos0—, 
%    HT)Q *      r        d9 

AnF 
dz     H%    n 



where 77 is replaced by 77/770 in equation (2). Thus, for small 770 the expressions for derivatives 

are truncated by keeping only first terms for the in-plane derivatives: 

— =—cos0A,F 

— =—smdAfF 
By    H t 

dF
      1   A    XT 

dz    H 

(3) 

nJ 

The parameter 770 will be omitted elsewhere and assumed to be included in 77. Under these 

assumptions the Lame equations will simplify: 

(AA,A,+BA„A,+CAnAn) M, 

U z . 

=0, 

where 3 by 3 matrices A,B,C were given in Iarve [9] and depend upon material properties and 0. 

The solution of these equations can be found in the form 

where 

and 

«f =*7A I rkdki(smy/ + ßkcos\i/)1, 

det[A/4r+BjU*+C] = 0 

(4) 

[A^+B/x.+C] 
'*i 

*jfc2 

*3. 

= 0 

The strains are calculated from displacements (4) by using truncated derivatives (3), and the 

stresses are obtained by using Hooke's law in the form 



o 
stj = ^'^ncyismyr+^cosy/f-1 (5) 

*=i 

The stresses are denoted sa..to emphasize that functions (5) satisfy only the asymptotically- 

derived truncated equilibrium equations and compatibility equations. Coefficients yk are obtained 

to satisfy the traction-free conditions at the hole edge: 

for yf=7Z/2 (p+l-th ply) and yf=-7ü/2 (p-th ply) 

srr = srQ =srz=®> 

and the continuity conditions at the interface yfcO: 

ui        ui 

s(p) = S(P+V S(P) _ ÄP+D   (p) _ (p+i) szz      szz      >szr   ~szr      >
S

ZQ ~
S

ZQ 

Nontrivial solutions of the problem exist for discrete X only. The displacements (4) and stresses 

(5) are defined with accuracy to an arbitrary multiplicative factor. The multiplicative factor will 

be denoted as K( 6) and 

Ui=K(6)uf, ^-=#(0)^ 

will also satisfy the truncated equilibrium equations and the boundary conditions. We shall be 

interested only in the solutions when o < Re(A) < l. These terms provide unbounded stress 

functions which dominate the solution for small j\. Equations (4) and (5) are normalized8 so that 

^(0) = lim(Hp77)1-A5zz(77,O,0). 7J-»o        If a ' 



1.4      Variational Formulation 

A three-dimensional linear displacement approximation through the plate is written as 

where X™(x-) are sets of m basis functions, in general not identical for i= 1,2,3. The total set of 

coefficients vtm consists of unknown coefficients uim and fixed coefficients K°, , so that ut are 

kinematically admissible, i.e., satisfy (1) for arbitrary u^. Summation is assumed upon repeated 

indices m. The nature of the functions %f1 (x.) is not specified at this point. They may, in fact, 

include functions (4). We assume that #?(*,) aie continuous. The total displacement (6) is a 

superposition of two parts uf and u *. It is important to note that neither of these terms has to 

satisfy boundary conditions (1), only their superposition does. The stresses generated by the 

displacements uf are calculated through Hooke's law, whereas the stresses generated by H* are 

assumed as follows: 

=-fc    ^v"V   m\ra'P    *h ,„h 
Cij=^KPmsiJ    ~sij+aij' 

where the bar sign is used to designate assumed stresses and 

ah_Ap)Ji aij-uijklu(k,l) ' 

sh-AP)uh__ Sij-Lijklu(k,i)> 

The stiffness properties C»« are constant through the ply and considered as piecewise constant 

functions of z in the laminate. The notation 



is used for conciseness, and the barred derivatives are calculated according to truncated 

expressions (3). Functions s°:p are calculated using Equation (5) for the interface between plies 

p, p+1, and K/0) are unknown functions. Since u, = u\ +uf we shall choose K* and u, 

[Equation (1)] as independent functions. The combined hybrid stress approximation in the plate 

can be written: 

JV-l 
5i=^-*;+x*,w. (7) 

where 

Practically, the approximation (7) offers advantages only in the vicinity of the hole edge. We 

shall confine it to a region T, which is bounded by the hole surface, the upper and lower facial 

plate surfaces, and a vertical boundary dTv sufficiently far from the hole edge. Beyond this 

region it is assumed that 

The fact that the hybrid displacement portion is discontinuous dTv (it is zero outside T) does not 

imply discontinuity of the total displacement which is still given by (1). What is important is the 

stress continuity at dTv. It will take place if 

NllKp(ß)s$p-s*=0,xiedrv 

10 



This condition will be shown to be satisfied if dTv is sufficiently far from the hole edge. 

Reissner's variational principle SR = 0 is employed. Functional R: 

*={p(*«ty-V(u> fr+^tyi* (8) 

is independently varied upon functions a^ and kinematically admissible ur Tractions Tt are 

prescribed over the boundary dVt and 

Substituting Equation (6) and (7) into (8), one obtains: 

r       P=1 

V 

+ \\TiUids. 
3V, 

where 
AT-l (v-i \ 

p=l \p=l 

+W(«JJ)). 

and 

We^Cgefr. 

Variation of R upon u), K(6) and u., yields: 

11 



+ imYKpie^P^) - s^u^SKniO) (9) 

+ IJlcrijf8ui + jj(Ti-eijnj)öui-
Ni1    jj    Ln,L 

y    V>J     l      dVf     
l lJ   J       l      P=l"(p)JJ 

z=z 

where 

*c^.ffI)=cji<T(,<T;. 

It was taken into account that 

s":P=0,\s«>Pn]\ -o. 
tJ,J I V      J\\7=7KP) 

The exact solution rums all integrands in (9) equal to zero. The equations obtained by varying 

u * and Kp(6) are actually quasi two-dimensional, and the 6 coordinate is a parameter. These 

equations are complementary. If all integrands of u * variation [first two lines of (9)] are zero, 

then Sy satisfies the same traction boundary conditions and truncated equilibrium equations as 

AM 

XK
P(0)sii'P • ff mese equations are satisfied under displacement boundary condition 

AM 

p=\ 

then by simple manipulations of the energy equations obtained by varying Kp(6), one can prove 

that they will be satisfied identically for arbitrary Kp(6). Due to the linear type of traction and 

displacement boundary conditions and the quasi two-dimensional character of equations for uh, 

one can represent the solution as 

12 



N-l 

P=I 

Without restricting generality, the approximation of ufp is also based on basis functions (6) 

where some of the coefficients u*f are fixed so that the boundary conditions 

are satisfied for p=l,...,N-l. Taking into account the displacement approximation expressions, 

we derive the following system of equations for determination of the coefficients uim and K* I
KP 

where 

and 

m = l,2,... 

m = l,2,...and p = l,...,N-1. 

off ~ ~Cijkl(UkmXk,l ~*~UlmXl,k) 

h,p        -l   .-,      ..   h,p     m h,p     m 

(10) 

^y      ~~ ~ ^pf Wfcro Äjt,; + "ta >WJE J 

Note that the fixed coefficients K°, also enter the equations and form an effective load vector 

additional to the traction loading. 

The first system of equations fully defines the total displacement (2) independently of u * 

and Kp(8). In the case of the polynomial approximation (6), the obtained displacements will not 

provide zero values of all three integrands in the last two lines of the variational equation (9) in 

13 



the vicinity of the intersections dVt n z = zip). Practically, we will observe traction discontinuity 

at the interfaces near the hole edge and the traction boundary condition error at the hole edge for 

the stress field o\. calculated using full displacement. It also follows that the equilibrium 

equations will not be satisfied. This is a result of approximating a directionally nonunique 

singular stress field (5) by polynomials. The directional nonuniqueness means that for 77 -> 0, the 

stresses s°jp may tend to be plus or minus infinity depending upon \|/. The polynomial 

approximation provides a unique and finite stress value at every point of a given ply. The values 

of the stress intensity factors are obtained to satisfy the condition of directional uniqueness of the 

polynomial part of <xff at the singular point. Consider the interface z=z"" and the /?-th ply. Let 

P^ be the exact value of the interlaminar traction on the interface z=z"". Then at the hole edge 

six conditions have to be simultaneously satisfied 

Ti=äyn%P^=äun^, 

wherein polar coordinates «j = n£ = 1, and all other components of the two normal vectors, are 

equal to zero. Taking into account Equation (7) one can write 

^limo(r3-^(ö)^/(77,|,Ö)) 

= lim^j - Kp(d)s?ZP (77,0,0)) (11) 

= ^(f,^),0) 
where the polynomial part of the stress tensor is given by equation: 

(J- — o- —s.. 
>J V i] 

14 



These equations are necessary conditions of directional uniqueness of the polynomial part of the 

stress tensor. In the case of an open hole, T.=0, the first limit in equation (11) yields that 

e%£,z(p\e)=0,p = l,...,N-l. 

This condition provides the following equations for determining Kp(9). 

^(f.^-J^W^f.^U (12) 
p = l,...,N-l 

where 

N-l 

The second limit in (11) cannot be enforced. However, if the exact solution can be represented 

according to (7), i.e., the nonpolynomial terms are correct, then both equations (11) should be 

satisfied for the same K (8). It is worth noting that if instead of a corner one has a crack, i.e., 

n* = —nf, then we shall have three pairs of directional uniqueness conditions, one per each stress 

component in the plane normal to the crack. It will require three stress intensity factors: Mode I, 

nandm. 

1.5      Spline Approximation of Displacement Components 

A detailed description of the spline approximation procedure and the properties of spline 

functions are given by Iarve [9]. The x,y plane was mapped into a rectangular region p, §, where 

0 <p < 1 and 0 <<|><2n. The transformation was defined as follows: 
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D 
x=—F1(p)cos0 + L-F2(p)a(0) + xc 2 

D 
y = jFl(p)sin<j> + A-F2(p)ß(<l>) + yc 

Functions Fj and F2 were defined as 

(13) 

*\U» = 

l + K-p, p<ph 

(l + K-ph)(l-p) 

1-Pl 
Ph<P<l        F2(p) = 

0, 

p-p h 
1-p h 

P^Pi 

Ph*P*l 

This transformation was defined so that the coordinate line p=0 describes the contour of the hole, 

and the coordinate line p=l describes the rectangular contour of the plate. Inside the near-hole 

region D/2<r <(1+K)D/2, which corresponds to 0<p <ph, a simple relationship between the 

polar coordinates and the curvilinear coordinates p, <|> exists: 

D     DK J        a_A r~l = ~Tp    and    e=<l)- (14) 

The width of this region is typically two hole radii, i.e, Kph = 2. Beyond this region a transition 

between the circular contour of the opening and the rectangular contour of the plate is performed. 

Functions a(<|)) and ß(<|>) describing the rectangular contour of the plate boundary were given by 

Iarve [9]. These functions are introduced so that parametric equations x=a((|>)+xc, y=ß((j))+yc 

describe the rectangular contour of the plate, and 0 <<px:<p>(1) corresponds to 0<x <L,y=A; 

(|)(1)<{|K<))(2) corresponds to x=0,0<y<A; <|>(2) <(jx(()(3) corresponds to 0£x<L, y=0 and <p(3) <<fx27C 

corresponds to x=L, 0<y<A. 
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The spline approximation of displacement and interlaminar stress components in 

curvilinear coordinates was utilized. Subdivisions were introduced through the thickness of each 

ply 

(5-1) (S) zy      =z0<zl<z2< - < zns = r 

where s=l,...,N-total number of plies. The s-th ply occupies a region z(5) < z < z(s~ ), and ns is 

the number of sublayers in the s-th ply. Nodal points are also introduced in the p and § directions 

as follows: 0 = pQ < p1 < .... < pm = 1, 0 = <j>Q < <j>x < .... <<j>k=2n:. The subdivision of the p 

coordinate is essentially nonuniform. The interval size increases in geometric progression 

beginning at the hole edge. The region 0 < p <ph in which the curvilinear transformation is quasi 

polar is subdivided into mo intervals, so that ph=pm. Sets of basic B-type cubic spline 

functions ^-(p)}^ , {>,•(*)£, . ti(z)ii' N* = S"J +2W + 1, along each coordinate are built 

according to recurrent procedures given by Iarve [9]. Splines along the $ coordinate have 

periodical properties at the ends of the interval. The three-dimensional approximation of 

displacement components was written using the tensor product of three one-dimensional sets of 

splines. The vector of the three-dimensional spline approximation functions was defined as: 

\x}q=Ri{p)*jW)Zl{z), 

q = l + (j-l)N  +(i-l)N k, 
z z 

I = 1,...,N , j = l,...,k,i = l,...,m + 3. 
z 

Since the orthotropic material properties become location dependent in the curvilinear coordinate 

system, the displacement components were considered relative to x, y and z as functions of p, <|) 

and z. The following approximation was used 
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«f=C,xU,  +SuxE    -u0 (15) 

Bold type will be used to distinguish vectors and matrices; superscript star means transpose 

operation. Vectors U, contain unknown displacement spline approximation coefficients. Non- 

square boundary matrices C,, C2, C3 and constant vector E are defined so that the 

approximation (15) provides a kinematically admissible, i.e., satisfying boundary conditions (1), 

displacement field for any coefficients U,-. The components of vector E are equal to 1 or -1 if the 

same component of % is nonzero at p=l, <|>(1) < <jx<()(2) (x=0) and p=l, (|)(3) < §<2K (X=L), 

respectively. All other components of the vector E are equal to zero. The boundary matrices are 

obtained by deleting a number of rows from the unit matrix. The deleted rows have nonzero 

scalar product with E. 

The region T of the hybrid approximation superposition is inside the region in which the 

transformation (13) coincides with (14). The boundary 3TV is concentric with the hole edge and 

is defined by equation r = — (l + x-p^), where mh<m0. For the purposes of efficient solution of 

the systems of equations for determining uf'p, a reduced set of splines in the p direction 

-^?(P)^£*   defined only over the first mh intervals is utilized. It is built exactly the same way as 

the one over the entire interval. It can be shown that the reduced set is a subset of the 

approximation (15). The approximation of the hybrid portion of the displacements can be 

written as 

1^'=<?'£'"?'*+£*";'* (16) 
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where \})'p are unknown coefficients and 

q = l + U-W  +(i-l)N k, 
z z 

I = 1 N ,; = l,...,k,i = 1 m  +3. 
Z n 

The coefficients of U°,pare nonzero only if the respective component of %A is nonzero at 

D = 0   . The vectors U°'p are defined so that 

«rp=xÄur*,p=pi mi, 

It is possible to do with high accuracy if r = -(l+Kpm ) is sufficiently far from the hole edge. The 
2 * 

matrices C\'p are derived from unit matrices similar to those in (15) by treating vectors U?'p 

analogously to vectors E. The truncated in-plane derivatives are calculated as: 

9      2 d   d      2 d 
— = cos0—,— = sin0—, 
dx     DK dp  dy     DK        dp 

The final outline of the solution procedure is as follows. Approximations (15) and (16) 

are substituted into Equation (10). The vectors of unknown coefficients of total displacement 

approximation U,- and the hybrid components U°'p are determined. Then the stresses at the hole 

edge on the ply interfaces are calculated and finally the stress intensity factors Kp(6) obtained by 

using Equation (12). The solution is complete and Equation (7) can be applied to provide 

accurate stress values including singularities. 

1.6      Numerical Results 

A square [45/-45]s plate similar to that in Wang and Lu [8] is considered. The geometric 

properties are L=A=20 in., xc=yc=L/2, D=2 in., ply thickness h=0.1 in. E,=20 Msi, E2= E3= 2.1 
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Msi, GI2= G13= 0^=0.85 Msi and v^v^v^^l. The ply properties are used for comparison 

purposes only and are not associated with a realistic material system. The displacement 

boundary conditions were applied so that u,/L=0.001. The average applied stress was calculated 

as 

* Atl z,y 

Several subdivisions were used for the convergence study. The 0 coordinate in all cases was 

uniformly divided into 48 intervals. The subdivisions of the p coordinate were: 

(i)   a total of m= 16 intervals, with m^ 12 intervals in the quasi cylindrical 

transformation region, which was a hole radii wide (Kph = l); the consecutive 

interval length ratio was q=1.2. 

(ii) m=24, m0=20, Kph = i, q=l .4. 

The subdivisions in the z-direction were also nonuniform and symmetric against the interface: 

(i)   ns= 1, one sublayer per ply. 

(ii) n =2, the sublayer closest to midsurface was 1.3 times thinner than the outer one. 

(iii) n=4, sublayer thickness ratio 1.3. 

First, the influence of the width of the region T on the value of the stress intensity factor 

is investigated. Subdivision into two sublayers per ply and 16 intervals were used. The width of 

the region mh was changed from 1 to 12 intervals. The stress intensity factor K(0) in units 

psix in(1_Me)) divided by the applied load c0 is shown in Figure 2a. Starting with mh =4 the K(B) 

values are practically unchanged. It should be noted that the minimum value, even for mA=l, is 

different from the value obtained for mh >4, only 12 percent. In all of the following results, mh 

=10. Figure 2b illustrates the influence of the density of subdivision on the K(6) values. A small 
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difference between the results obtained with the limiting meshes can be seen for 0 angles around 

45° and 135° where the stress intensity factor is small. A qualitative agreement between the 

present results and Wang and Lu [8], also shown in Figure 2b, is observed. 

Stress results obtained by using the hybrid approximation will be illustrated below. The 

rz and zz stress components in the cross section 6=90° will be considered at the interlaminar 

surface. The shear stress cn distribution calculated from the total displacements is shown in 

Figure 3a for two different subdivisions. 

For distances from the hole edge smaller than 0.4H and 0.9H for the finer and coarser 

subdivisions, respectively, the shear stress is discontinuous at the interface. Mesh refinement 

will further shrink the distance at which the discontinuity is visible; however, the stress values at 

the hole edge on the two-ply surfaces will diverge even more. This behavior is readily 

understood by examining the asymptotic stress functions (5). The functions J~(1,V,90
O
) are 

Km 

(a) (b) 

2- 
x           1             1 ^_         ^ Wang and Lu (1993) 
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Figure 2.   Stress Intensity Factor for Different Superposition Region Sizes (a) and Different 
Subdivisions (b). 
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Figure 3.   Shear Stress Calculated Using Total Displacement (a) and the Hybrid 
Expressions (b). 

shown in Figure 4. The angular distribution of the shear component s^(i, yr,90°) satisfies the 

zero boundary conditions at the hole surfaces y=±7c/2 and the continuity condition at the 

interface y = 0. In addition the stress amplitude along the interface is zero which means the 

-1.57 -0.785 0 0.785 
Local coordinate y 

1.57 

Figure 4. Angular Distribution of the Asymptotic Stress Functions, 

stress in not infinitely growing if the singular point is approached in this direction. Within the 

plies, the same stress component is unbounded at the same point, and tends to be minus infinity 

in the lower ply and plus infinity in the upper ply. The directional nonuniqueness of the solution 
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is reflected by diverging the interlaminar shear stress value given by the polynomial 

approximation (Figure 3a). The stresses calculated by using Equation (7) are shown in Figure 3b 

and clearly indicate convergence with mesh refinement. Note that the stress displayed on this 

figure is at the same time the pure polynomial part of the hybrid stress, since s^(l, v,90° )=0. 

Thus, by approaching the singular point along the hole edge, we will again recover the zero 

value. Inside the plies infinite stresses will result due to the presence of a singular term in the 

hybrid approximation. 

Finally, the transverse normal stress component will be considered. As seen in Figure 4, 

it exhibits a practically constant directional amplitude in the 9=90° cross section. The stress 

values c   defined through the total displacement field by using the same two meshes as before 

are shown in Figure 5a. For both meshes no discontinuity between the stress values in the two 

plies at the interface can be seen. However, the stress values obtained using the coarse and the 

fine mesh are different in the hole edge vicinity. Figure 5b displays the quantity 

Kmc -*; 
which is superimposed to the displacement-based stress value in Equation (7). For the fine mesh 

it has a nonzero value only in the very vicinity of the singularity and extends up to 0.9H away 

from the hole edge for the coarse mesh. The hybrid stress values Ga for the two meshes are 

shown in Figure 5c and display remarkable agreement. 
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2. DAMAGE INITIATION AND PROGRESSION FOR BASIC LAMINATES 
WITH A HOLE 

The occurrence of holes in load-bearing composite structures is pervasive in the 

aerospace industry as a result of the use of mechanical fasteners in assembly and the use of 

cutouts to accommodate wiring and hydraulic lines. The design of laminates with holes or with 

fasteners in composite structures is largely based on experimental test data (Shyprekevich [14]). 

The most widely utilized analysis methods are those based on the two-dimensional elasticity 

solution provided by Lekhnitskii [15] for an infinite orthotropic plate with an open hole. These 

methods, including the model of Garbo and Ogonowski [16], are summarized by Snyder et al. 

[17]. In an effort to model the fastener, Lekhnitskii assumes a cosine distribution of radial 

tractions and a contact zone size. Although the aforementioned analyses are useful design tools, 

a more rigorous stress analysis method and failure criterion are needed to predict the strength of 

laminates with holes and with fasteners. 

Recently, Iarve [9,18] developed a three-dimensional stress analysis method for a 

composite laminate with an open hole or an elastic inclusion. This method is based on the spline 

variational theory and was verified through comparisons of in-plane and interlaminar stresses 

with results obtained from an asymptotic solution. Results presented herein were determined 

using Spline Variational Elastic Laminate Technology (SVELT), a dedicated computer package 

which implements the analysis described by Iarve [9,18]. 

A number of experimental studies have documented the progression of damage for 

composite laminates with open holes. Shalev and Reifsnider [19] presented observations on the 

onset of delamination, while transverse cracking was the focus of works by Joshi and Huang [20] 

on quasi-isotropic laminates and Reddy et al. [21] on cross-ply laminates. Lessard and Chang 
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[22] discuss the development of damage in laminates containing open holes for tension. In these 

works, observations were not made in a building block fashion for both unidirectional and basic 

laminates. 

In this two-part work, quasi-static loading experiments were conducted on basic 

laminates to document the initiation and growth of damage and to record changes in the strain 

field. The objective of this work was the development of an experimental database from which 

three-dimensional stress analysis methods with discrete damage and associated failure criterion 

are later investigated and verified. In part I of this work, three M7/5250-4 laminates, [08]T, 

[908]T, and [±45]2s, were incrementally loaded to failure. For each loading increment, axial 

strain was recorded in close proximity to the hole, and the specimen was x-rayed. Acoustic 

emission data were collected during loading and compared to strain measurements and 

radiographic images to identify significant damage events. Additional analysis was conducted by 

comparing experimental strain data to results obtained from elasticity theory and from spline 

variational theory. Part II of this work is in progress and considers more complex laminates. 

2.1      Experiment 

A series of tension tests were conducted to document the initiation and propagation of 

damage in basic composite laminates with a centrally located circular hole. Of particular interest 

is the response of IM7/5250-4. Testing was conducted in two phases: monotonic loading of 

unnotched tensile coupons to failure and incremental loading of open-hole specimens to failure. 

The purpose of the first phase is to obtain mechanical properties including stiffness and strength 

in the transverse and longitudinal directions. The purpose of the second phase is to document the 

progression of damage and the corresponding strain response. Three laminate orientations were 
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considered: [08]T, [908]T, and [±45]2s- Each laminate was cured according to the manufacturer's 

recommended cure cycle and was postcured at 227°C (440°F) for a duration of five hours and 40 

minutes. The average fiber volume was reported as 62 percent based on procedures established 

in ASTM 3171-76, and the void content was determined to be less than one percent. 

For the monotonic loading phase, the nominal tensile coupon dimensions were 2.54 cm 

wide, 30.48 cm long with a tab length of 2.54 cm for the [908]T and the [±45]2s laminate. A 

variation of this specimen was used for the [08]T laminate, where the coupon width was 1.27 cm. 

The average ply thickness was determined to be 0.134 mm (0.00527 in.). A total of six 

specimens were tested for [08]T and [908]T laminates, while three replicate tests were conducted 

for the [±45]2s laminate. Measurements of axial and transverse strains were recorded for each 

specimen using strain gages during loading. Results of the monotonic tensile testing are 

summarized in Table 1. 

TABLE 1 
Summary of Mechanical Properties for Basic Laminates 

Laminate Modulus, GPa Strength, MPa Strain to failure, % 

[08]T 151 2640 1.5 

[908]T 10.7 68.9 0.68 

[±45]2S 21.4 208 >3.0 

For the incremental loading phase, an open-hole tension specimen is utilized with the 

following specimen dimensions: L=30.48 cm, W=7.62 cm, tab length =2.54 cm, and hole 

diameter D=1.27 cm. A longer tab length, 3.81 cm, is selected for the [08]T laminate to avoid tab 

debonding. Prior to initial loading, no transverse cracks were observed upon radiographic 

inspection of each specimen. Each specimen was monotonically loaded to a value PI and then 
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unloaded. Axial strains were recorded during the test using up to six strain gages, while acoustic 

emission measurements were monitored to identify potential damage events. Typically, two 

strain gages were employed in the far-field region, and four strain gages were arranged to record 

the strain intensity approaching the hole edge perpendicular to the loading direction. The load PI 

was either a predetermined value based on assumed ply behavior, usually well below the 

anticipated transverse cracking stress, or a value corresponding to a significant acoustic event 

after which the specimen was unloaded. Following loading of the specimen to a value, PI, the 

specimen was x-rayed in the unloaded condition to document evidence of damage. This process 

was repeated for increasing loads P2, P3, etc. until failure. 

A description of the drilling procedure is provided to emphasize the importance of 

minimizing drill-induced damage. A carbide-tipped steel drill bit with an operating speed of 800 

rpm was selected for specimen fabrication procedures. This type of bit is specially designed for 

cutting holes for layered media such as circuit boards. Surface damage was minimized by using 

glass/epoxy laminates on the top and bottom surface of the specimen prior to drilling. This 

drilling process produced holes that were absent of transverse cracks for nine out of ten holes. It 

is important to note that drilling-induced damage cannot be totally eliminated. Utilizing similar 

procedures, Schaff, et al. [23] showed that damage exists in the form of chipping and is visible in 

the surface ply around the hole periphery extending away from the edge a distance of one ply 

thickness. These regions were rarely more than a few fiber diameters in depth through-the- 

thickness of the ply and typically occurred where fibers approach the edge at a large angle. 
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2.2      Results and Discussion 

2.2.1 Analysis 

S VELT is based on the spline approximation of displacements u, v, and w in 

terms of unknown spline coefficients and sets of basic spline functions. Displacements, 

interlaminar tractions, and prescribed tractions are used to construct a system of equations by 

applying the minimum potential energy principle. After displacement boundary conditions are 

enforced, the remaining set of equations can then be solved for the unknown spline coefficients. 

Strains are determined from displacement relations and are continuous within a ply. The spline 

geometry utilized to obtain the present results is given by n'=3, k'=72, m'=22, m'0=16, and q=1.4 

according to the convention described by Schaff, et dl. [23]. 

Two-dimensional results were obtained using the elasticity solution for an 

orthotropic plate with a circular hole [15]. All stress analysis results were obtained using the 

following properties: El 1=151 GPa, E22=E33=10.7 GPa, Gi2=G23=5.9 GPa, Gi3=3.26 GPa, 

vi2=V23=0.309, V13=0.449, a\ 1=0.6Ixl0"6/°C and cc22=25.2xlO-6/°C. 

2.2.2 [908]T Laminate 

The [908]T laminate was subjected to two loading increments: 23.7 MPa (3.44 

ksi) and 32.7 MPa (4.74 ksi). The last loading corresponds to the failure load. It is apparent 

from acoustic emission sensors and strain measurements that initiation of a transverse crack and 

specimen failure occurred simultaneously. Inspection of the post-failed specimens indicates net 

tension failure perpendicular to the loading axis in the hole ligament. The location of the failure 

is described by transverse cracks at approximately 87° and 270° clockwise from the top of the 

specimen along the loading direction, hereafter referred to as the reference direction. Figure 6 

shows the stress-strain curves obtained from four strain gages (el, e2, e3, and e4) in close 
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Figure 6. Stress-Strain Curves from Gages e1-e5 for [90JT Laminate. 

proximity to the hole and for the far-field strain gage (e5). Gage el is inside the hole, and e2, e3, 

and e4 are centered at distances 0.127 cm (0.05 in), 0.381 cm (0.15 in), and 0.889 cm (0.35 in) 

away from the hole edge perpendicular to the loading direction. Strains e2 to e5 are linear up to 

failure, whereas strain on the hole edge, el, is initially linear and exhibits slightly nonlinear 

behavior at approximately 0.6 percent strain. This value of strain is close to the failure strain of 

the unnotched tensile coupons, 0.68 percent. The strain recorded from gage el is 0.84 percent at 

failure which is 25 percent greater than the strain to failure reported in Table 1. 

In Figure 7 the axial strain from SVELT and from experiment (e2, e3, and e4) are 

plotted perpendicular to the direction of loading and along a radial path beginning at the hole 

edge and extending to 12.5Tlam where T^ is 0.114 cm (0.045 in). Comparisons are made for 

applied stress values of 10.2 MPa (1.48 ksi), 15.3 MPa (2.22 ksi), 20.4 MPa (2.96 ksi), and 23.8 

MPa (3.45 ksi). In general, good agreement between SVELT and experiment is observed. Strain 

concentration factors at the hole edge can be determined by the strain ratio el/e5 and compared 

to those determined by SVELT and Lehknitskii. The range of values of el/e5 at low loadings is 

calculated as 2.54-2.65, which agrees well with those obtained from SVELT and elasticity, i.e., 

2.66 and 2.54, respectively. 
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2.2.3    [08]T Laminate 

The [OS]T specimen was subjected to nine load steps where each step is defined by 

the following peak values of applied stress: 183.9 MPa (26.67 ksi), 229.8 MPa (33.33 ksi), 270.7 

MPa (39.26 ksi), 332.0 MPa (48.15 ksi), 510.7 MPa (74.07 ksi), 766.1 MPa (111.1 ksi), 1277 

MPa (185.2 ksi), 1787 MPa (259.2 ksi), and 2119 MPa (307.3 ksi). Laminate failure occurred in 

net tension during the ninth load step at an applied stress of 2119 MPa (307.3 ksi). A description 

of the onset of damage and the subsequent growth of damage is discussed with the aid of 

radiographic images and stress strain curves for selected loadings. In Figures 8a through 8e, 

radiographic images following load steps 1,2, 3,4 and 8 are presented as a direct indication of 

the damage state. The [0S]T laminate used the same arrangement of strain gages as the [908]T 

specimen, except two strain measurements were recorded in the far-field region. Inspection of 

Figure 8 shows two far- field strain gages at the bottom of the specimen, where gage e5 is 

centered and gage e6 is closer to the edge. In Figure 8 a strain gage wiring post is positioned 

close to the hole and 135° clockwise from the reference direction. The experimentally-measured 

stress-strain results are shown for load steps 1, 2, 3,4,5, and 9 in Figures 9a through 9f, 
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Figure 9. Stress-Strain Curves for Gages e1-e6 for [08]T Laminate at Load Steps: (a) 183.9 
MPa (26.67 ksi), (b) 229.8 MPa (33.33 ksi), (c) 270.7 MPa (39.26 ksi), (d) 332.0 MPa 
(48.15 ksi), (e) 510.7 MPa (74.07 ksi), and (f) 2119 MPa (307.3 ksi). 
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respectively. Results are provided for all gages in close proximity to the hole, el through e4, and 

gages in the far-field region, e5 and e6. Gage el was recorded for only the first two load steps 

due to inadequate strain gage capacity. 

The first transverse crack emitted from the hole edge approximately 277° 

clockwise from the reference direction. Inspection of Figure 8a reveals that a transverse crack 

6 mm in length appeared after the first loading step, 183.9 MPa (26.67 ksi). It is speculated that 

the crack initiated at a stress of 174 MPa (25.24 ksi) based on the first acoustic emission peak, 

hi general the effect of the transverse crack was not evident in the measured strain data, because 

the crack and the strain gages are located on opposite sides of the hole. However, strain gage el 

showed a slight increase at 176 MPa (25.53 ksi) which coincided with the first acoustic peak, 

174 MPa (25.24 ksi). 

The second transverse crack occurred at the end of load step 2 and is shown in 

Figure 8b. For this load step the specimen was unloaded at the first signal of activity from the 

acoustic emission sensor. Strains el and e5 show erratic behavior in Figure 9b at the end of the 

second loading. Inspection of the x-ray radiograph for load step 3 exhibits the development of 

the third crack at 263° clockwise from the reference direction and extends within 1 cm of the end 

tab. Figure 8c also shows the onset of this new crack and the growth of two previous transverse 

cracks to the tab region. During the third load step, the strain el exceeded the gage capacity at an 

applied stress of 257.9 MPa (37.40 ksi). Almost simultaneously, a drop of strain e5 to near zero 

indicates stress relaxation in the center strip portion bounded by transverse cracks, i.e., the load 

carried by the mid-strip was transferred to the edge ligaments. Furthermore, the load transfer is 

also detected by the increase of strains e2, e3, e4, and e6 as shown in Figure 9c. The final 
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transverse crack developed near strain gage e2 at approximately 83° clockwise from the 

reference direction during load step 4 at a stress of 245.1 MPa (35.55 ksi). 

Figure 10 displays the experimental stress strain curves for gage e2 for load steps 

1-9. Note that the e2 strain behavior is nearly identical after load step 4. The average moduli 

obtained from e2 for load steps 5-7 were determined to be within one percent of the experimental 

value from unnotched coupons. This implies that the strain concentration is diminished in close 

proximity to the hole boundary. The net stress based on ligament area at failure, 2543 MPa 

(368.8 ksi), agrees closely with the average static strength of the unnotched coupons, 2643 MPa 

(383.3 ksi). 
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Figure 10. Experimental Strain Measurements from Gage e2 for Loadings 1-9. 

In a similar fashion as the [908]T laminate, the experimental and theoretical strain 

results are compared in Figure 11. Results are shown for applied stresses of 102 MPa (14.8 ksi), 

143 MPa (20.7 ksi), and 186 MPa (27 ksi). As expected SVELT slightly overpredicts the 

experimental strains; however, results agree within five percent for all cases. Note that the [08]T 

laminate produced a higher stress concentration compared to the [908]T laminate. Values of 

experimental strain concentration factors ranged from 5.92-9.2 at low loadings. Results are 

reported as 6.825 and 6.78 based on SVELT and Lekhnitskii's solution, respectively. 
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Figure 11. Comparison of Experimental and Theoretical Strains for [0^r Laminate. 

2.2.4   [±45]2s Laminate 

The [±45]2s laminate was tested for a series of six incremental loadings 

corresponding to the following values of applied stress: 51.07 MPa (7.410 ksi), 76.61 MPa 

(11.11 ksi), 86.83 MPa (12.59 ksi), 114.9 MPa (16.66 ksi), 140.5 MPa (20.38 ksi), and 158.3 

MPa (22.96 ksi). On the sixth loading the laminate failed along the fiber direction similar to a 

typical unnotched [±45]s tensile coupon. Figures 12a and 12b display radiographic images of the 

specimen following load steps 4 and 5, respectively, and Figures 13a through 13f show stress- 

strain curves for load steps 1 through 6. Note that the strain el is not shown after the third 

loading because of damage on the gage site. 

(a) (b) 

Figure 12. Radiographs of [±45]2S Laminate for Stresses of (a) 114.9 MPa (16.66 ksi) and 
(b) 140.5 MPa (20.38 ksi). 
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Figure 13. Stress-Strain Curves for Gages e1-e5 for [±45]2S Laminate at Load Steps: 
(a) 51.07 MPa (7.410 ksi), (b) 76.61 MPa (11.11 ksi), (c) 86.83 MPa (12.59 ksi), 
(d) 114.9 MPa (16.66 ksi), (e) 140.5 MPa (20.38 ksi), and (f) 158.3 MPa (22.96 
ksi). 
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The onset of cracking as determined from radiographic images was observed after the 

fourth loading. Unlike the previous laminates, no single initial crack was identified. Rather, 

several transverse cracks in 45° and -45° plies were visible in Figure 12a, which describes the 

initial damage state after the fourth loading. Transverse cracks appear in close proximity to the 

strain gages originating approximately 75° clockwise from the reference direction in the 45° ply 

and 105° in the -45° ply. The longest crack appears in the -45° ply and emanates a distance 7.2 

mm from the hole at 285° clockwise from the reference direction. The first significant acoustic 

emission event was recorded at 109.4 MPa (15.87 ksi), and further peaks continued until 

specimen unloading at 114.9 MPa (16.66 ksi). The cracks grew in succeeding loads, while 

multiple new cracks developed as shown in Figure 12b. 

Upon examination of strain measurements in Figure 13, a decrease in strain el is 

evident between load steps 1,2, and 3, until the strain behavior is almost exactly that of strain e2 

for applied stresses below 96 MPa (14 ksi) in load step 4. This implies that stress relaxation 

occurred on the hole edge upon damage initiation. An increase of strain e2 at the sixth load 

demonstrates the effect of transverse crack growth on the stress-strain behavior. The far-field 

strain e5 remained unchanged until the fifth loading and increased by ~6 percent at the sixth 

loading, where transverse cracks occurred in the far-field region. This is demonstrated by a 

sudden change of stress-strain curve for e5 near the end of the fifth loading as shown in Figure 

13e. Far-field strain e5 indicates some degree of damage at the fifth and sixth loadings. Note 

that all strains become highly nonlinear as stress level increases. 

The net stress at failure was 205.5 MPa (29.80 ksi) and compared well with the 

unnotched tensile strength, 207.8 MPa (30.14 ksi). Good agreement between experimentally- 

measured strains and SVELT is shown in Figure 14 for applied stresses of 27.4 MPa (3.970 ksi), 
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Figure 14. Experimental and Theoretical Strains for [±45]2S Laminate. 

41.0 MPa (5.950 ksi), and 54.7 MPa (7.930 ksi). The strain concentration factor was calculated 

in the initial linear region of stress-strain curves both experimentally and theoretically. The 

experimentally-determined average was 2.23 based on data from gage el and e5. Calculations 

from SVELT and Lekhnitskii resulted in values of 2.20 and 1.84, respectively. 
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3. CONCLUSIONS/RECOMMENDATIONS 

• Method of superposition of a hybrid and displacement approximation was developed 

to provide accurate stress fields in the vicinity of the ply interface and the hole edge in a 

multilayered composite. The asymptotic analysis was used to derive the hybrid stress functions. 

The displacement approximation was based on polynomial B-spline functions. 

• The multiplicative factor of the singular term in stress solution near the ply interfaces 

and the open hole edge was determined in [45A45] laminates under mechanical loading. 

Convergence study showed that accurate values of the multiplicative factor of the singular term 

can be obtained with the coarse out-of-plane subdivision of one sublayer per ply. Converged 

transverse interlaminar stress components including the singular region were shown. 

• Extension of this approach to thermal loading and fastener hole problems is among 

immediate future developments. 

• An experimental investigation has been conducted on the initiation and growth of 

damage in close proximity to open hole [08]T, [908]T and [±45]2S laminates under incremental 

tension loading. The development of damage observed by x-ray radiography was correlated with 

the stress-strain behavior. Failure occurred without any prior evidence of damage for the [908]T 

laminate, whereas considerable damage was evident prior to failure of the [08]T and [±45]2s 

laminates. As damage developed for the [08]T and [±45]2s laminates, stress concentration 

decreased and the net stress at failure was nearly identical to the static strength of the respective 

unnotched coupon. However, for the [908]T laminate, the net stress at failure is related to the 

static strength of the unnotched specimen through a reduced stress concentration factor. For all 

laminates, the analytical predictions of strain concentration factors calculated by spline 
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variational theory and by elasticity showed good agreement with experimentally-measured 

results. Overall, a set of damage observations was developed for comparison with stress analysis 

methods that incorporate progressive damage modeling. 

•   Development of damage propagation modeling framework based on spline 

approximation stress analysis technique and correlation with the experimental results will be 

conducted. 
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